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ABSTRACT. Leaf defences, leaf nutritional quality and leaf expansion rates may 
vary with resource availabilities to plants. Such variation could affect rates of leaf 
loss to herbivores, particularly along the steep resource gradients in disturbed 
forests. Intraspecific and interspecific variation in leaf damage and leaf expansion 
rates were measured on dipterocarp seedlings planted into secondary forests 1, 5 
and 15 y after logging, and in adjacent primary forest of Sabah, Malaysia. Herbi- 
vory rates or amounts of leaf damage were compared across habitats and species 
for expanding, recently expanded, and mature leaves of Shorea leprosula and Dtyobal- 
anops lanceolata (Dipterocarpaceae). In all four habitats, leaves of the faster growing 
S. leprosula sustained higher rates and amounts of leaf-area loss than did the 

tougher leaves of slower growing D. lanceolata. Expanding leaves accumulated more 
leaf-area loss per week than did mature leaves. In all habitats and in both species, 
more than 25% of expanding leaves disappeared entirely. Rates of leaf-area loss 
per week differed among habitats for expanding leaves but not for mature leaves. 
In a relatively open, 1-y-old logged forest, faster leaf expansion reduced the time 
leaves spent in the most vulnerable stage; however, in S. leprosula a greater rate of 
leaf area loss countered the shorter expansion time. Thus, leaves accumulated 
similar total damages across habitats, and herbivory did not produce differences 
among habitats in seedling growth or mortality. High levels of resources may 
increase both leaf palatability and leaf expansion rates, with counteracting effects 
on herbivory. 

KEY WORDS: Danum Valley, dipterocarp, Dryobalanops lanceolata, herbivory rates, 
leaf damage, leaf expansion rates, logged tropical forests, secondary forests, Shorea 
leprosula 

INTRODUCTION 

In tropical forests, herbivores typically remove 10-30% of a plant's leaf area 
each year (Coley & Aide 1991, Coley & Barone 1996). To deter grazing by 
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insects and mammals, plants deploy phenological, structural and chemical leaf 
defences. Although temporal and spatial variation is high (Aide & Zimmerman 

1990, Coley 1983a, Lowman 1985), average rates of leaf loss to herbivores vary 
systematically among plant species and correlate with prevailing levels of leaf 
defences (Coley 1983b, 1986; Coley & Barone 1996, Lowman 1992b). Among- 
species differences in leaf defences and herbivory rates are related to resource 
availabilities in the typical habitats (Bazzaz et al. 1987, Coley et al. 1985). Des- 

pite the limited habitat tolerances of many plant species, conspecific indi- 
viduals can experience a wide range of resource availabilities. For example, 
although many seedlings and saplings of persistent species tolerate the shaded 
conditions of the forest understorey, individuals that survive gap formation 

suddenly experience a high-light environment. Large differences in resource 

supply rates could result in differential leaf palatability, due to disparities in 
nutritional quality (especially nitrogen levels) and/or leaf defences, and thus 
differential herbivore attack. 

Both interspecific and intraspecific patterns in leaf defences may relate to 
resource budgets (Bazzaz et al. 1987). Species adapted to resource-poor environ- 

ments, such as deep shade, heavily defend their leaves, because these leaves 
are expensive to replace, and because the opportunity costs of defence are 

relatively low (Coley et al. 1985). Thus, understorey plants and seedlings of 

persistent species, tolerant of the low light conditions in the tropical forest 

understorey, tend to have more leaf defences and lower rates of herbivory than 
do forest gap and pioneer species, specialized for high light conditions resulting 
from disturbance (Coley 1983b, Coley & Aide 1991). In contrast, intraspecific 
patterns in leaf defences tend to be in the opposite direction from interspecific 
patterns (Bazzaz et al. 1987). Defensive investment increases in high resource 

environments, since particular resources, present in excess of amounts that 
can be directed toward growth, can be invested in leaf defences (Bryant et al. 
1983, 1987; Davidson 1993). For example, where light is abundant relative to 

nitrogen, carbon might be invested in nitrogen-free defences such as tannins 
or terpenes. In environments with high levels of the usually limiting resource, 
plants could increase their defensive investment and thus reduce herbivory on 
their leaves (Bazzaz et al. 1987; Bryant et al. 1983, 1987). Species limited equally 
by light and nitrogen are thought to experience greater herbivory than those 
with excess carbon or nitrogen to invest in defensive function (Davidson 1993). 

Young leaves are more vulnerable to herbivory than are mature leaves. In 

tropical forests, young expanding leaves suffer much greater rates of leaf-area 
loss to herbivores than do mature leaves (Coley & Aide 1991, Coley & Kursar 

1996). Damage to young leaves may also be more important than indicated by 
the area removed, since damaged leaves may not grow to full size (Cooke et al. 

1984). Young leaves are generally more nutritious to herbivores than are 
mature leaves (Kursar & Coley 1991, Stamp & Bowers 1990) and also have 
fewer structural defences (Kursar & Coley 1991). Toughness, a measure of 
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structural defences, tends to be negatively correlated with herbivory rates 
(Coley 1983b, Lowman 1992b, Lowman & Box 1983). Young leaves cannot 
develop maximum toughness until they have completed expansion (Kursar & 
Coley 1991), and leaf toughness increases dramatically about the time leaves 
stop expanding (Aide & Londofio 1989, Ernest 1989, Kursar & Coley 1991, 
Lowman 1992a). 

Several strategies can reduce losses of young leaves to herbivores. Plants can 
reduce the palatability of young leaves, either by limiting their nutritional 
value or by producing chemical defences (Coley & Kursar 1996, Kursar & Coley 
1991). Alternatively, plants can increase leaf expansion rates, thereby reducing 
the time during which leaves are especially vulnerable (Aide 1993). For 
example, Gustavia superba (Lecythidaceae) has very rapid leaf expansion, despite 
a large leaf size, and a specialist herbivore can successfully attack its young 
leaves only during a window of a few days (Aide & Londofio 1989). However, 
the two strategies of rapid expansion and low palatability appear to be physio- 
logically incompatible (Coley & Kursar 1996, Kursar & Coley 1992). Rapid leaf 
expansion requires high enzyme concentrations (correlated with high nitrogen 
levels and high nutritional quality), particularly early in leaf expansion, and 
competition for resources prohibits simultaneous synthesis of secondary meta- 
bolites (Coley & Kursar 1996). Conversely, lower enzyme concentrations or 
increased investment in defensive compounds reduce leaf palatability, but also 
slow leaf construction and reduce the leaf expansion rate (Coley & Kursar 
1996, Kursar & Coley 1992). As a consequence, very young leaves (5% of full 
size) of rapid expanders tend to be highly palatable (Aide & Londoio 1989, 
Kursar & Coley 1991), and species with rapid expansion tend to have higher 
rates of leaf damage than do those with slow expansion (Coley & Kursar 1996). 
Where leaf palatability cannot be further reduced, faster expansion may be 
both an ecological and an evolutionary response to decrease herbivory. 

Leaf expansion rates, leaf chemical and structural defences, and nutritional 
quality of leaves all can vary across light environments. Within species, assum- 
ing approximately similar herbivore densities across habitats, herbivory rates 
may be more likely to vary among habitats with large differences in resource 
availability. In previously undisturbed forests, logging induces sudden and dras- 
tic changes in the light environment and microclimate. Openings are created 
in the forest canopy, significant soil disturbance occurs, and a large but hetero- 
geneous amount of organic material is added to the soil (Nussbaum et al. 1995, 
Pinard & Putz 1996, Uhl et al. 1982). Although soil nutrient levels change very 
little, light levels increase substantially (Howlett 1998, Pinard & Putz 1996). 
Seedlings and saplings in logged sites experience a hotter and drier environ- 
ment with higher light availability than do seedlings in the shaded and humid 
understorey (Howlett 1998, Turner & Newton 1990, Uhl et al. 1988). Since 
Southeast Asian dipterocarps (Dipterocarpaceae) tend to have high levels of 
carbon-based resins (Ashton 1982, Messer et al. 1990) and phenolics (Becker 
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1981, Waterman et al. 1988), they might be predicted to produce more leaf 
defences in logged forests than in primary forests. With more energy available, 
leaf expansion rates also could increase in logged forests. If either chemical 
defences or leaf expansion rates increase with light availability, plants in the 

recently logged forest should experience less herbivory than do their congeners 
in primary forest. Alternatively, enhanced photosynthetic capacity could 
increase leaf nitrogen levels in high light environments, and could thus lead 
to increased herbivory (Mooney & Gulmon 1982). Together with any habitat 
correlated herbivore abundances, interactions among these factors determine 
differences in leaf palatability and herbivory rates across habitat boundaries. 

Along with implications for hypotheses concerning plant-herbivore interac- 

tions, among-habitat differences in herbivory rates could influence patterns of 

seedling growth and survival in logged forests. For two commercially valuable 

tropical tree species differing in shade tolerance, we compared leaf area losses 
to herbivores among four habitats that differed in light availability. In primary 
forest and three logged forest habitats of different ages, we assessed leaf 

expansion and herbivory rates on planted seedlings of Shorea leprosula Miq. and 

Dryobalanops lanceolata Burk. (Dipterocarpaceae). We monitored the expansion 
of new leaves and measured leaf area losses on expanding, young, and mature 
leaves. 

METHODS 

Study site 
We conducted this study at the Danum Valley Field Centre (DVFC) in 

Sabah, Malaysia. DVFC adjoins the 438-km2 Danum Valley Conservation Area 
in the midst of a 106-ha forest concession reserved for timber production 
(Collins et al. 1991, Marsh & Greer 1992). The Sabah Foundation (Yayasan 
Sabah), a statutory body established by the Sabah legislature to sponsor eco- 
nomic development, manages both DVFC and the Conservation Area and oper- 
ates the logging concession. Vegetation is primarily lowland dipterocarp forest 

(Newbery et al. 1992, 1996), dominated by emergent trees in the family Diptero- 
carpaceae. Since many of these canopy trees are commercially valuable, large 
areas of natural forest are managed for timber production. The terrain is roll- 

ing to steep and ranges from 200 to 1000-m elevation. Soils and geology are 

extremely variable, both locally and regionally (Acres et al. 1975, Marsh & 
Greer 1992, Nussbaum 1995). DVFC receives a mean annual rainfall of 2800 
mm (Marsh & Greer 1992). Although all months average > 100 mm of rainfall, 
two relatively dry periods occur in April and in August-September (Brown 
1993, Marsh & Greer 1992). Daily temperatures reach a mean daily minimum 
of 22 ?C with little seasonal fluctuation, while mean daily maxima range from 
29 ?C during December-February to 32 ?C during the drier months of April 
and September (Brown 1993). 

In December 1992, we selected three 16-m x 20-m plots in each of three 
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habitats: primary forest, and 5-y-old (Coupe 78) and 15-y-old (Coupe 88) pion- 
eer-dominated secondary forests logged in 1978 and 1988. Primary forest plots 
were located in sites with no recent canopy gaps, and secondary forest plots 
had canopies dominated by Macaranga spp. (Euphorbiaceae) and relatively few 
understorey shrubs or saplings of primary forest species. In June 1993, three 
plots were established in a recently logged forest (Coupe 92, 1-y-old), which 
contained mixtures of pioneer seedlings and saplings, herbaceous weeds, and 
vines, and were expected to resemble the 5- and 15-y-old logged forests when 
they attain those ages. The site descriptions given here for logged forest plots 
applied only to portions of their respective coupes; sites of these types and 
sufficient size generally were found near roads and log yarding areas. In the 
secondary forests and the recently logged forest, following the standard prac- 
tice for dipterocarp replanting projects, vines and herbaceous weeds were cut 
before planting. This site preparation reduced the canopy variation within hab- 
itat classes, and facilitated access for the experiments. 

Study species 
Each of the 12 plots was planted with seedlings of Dyobalanops lanceolata and 

Shorea leprosula (Dipterocarpaceae) as part of an experiment to assess potential 
growth rates in the four habitats described above (Howlett 1998). These locally 
common emergent species (Meijer & Wood 1964) are planted widely near 
DVFC in reforestation projects. Seedlings approximately 30-cm tall were 
acquired from the Yayasan Sabah/Face Project production nursery, where they 
had been cultivated from seeds under neutral density shading at 30% of full 
sunlight. Planting followed site selection and preparation in each habitat: in 
December 1992-February 1993 for primary forest, Coupe 78 and Coupe 88, 
and in June-July 1993 for Coupe 92. In each of the 12 plots, 40 seedlings of 
each species were planted at alternate positions in an 8 x 10 checkerboard 
array at 2-m spacing. In September 1993, the leaf area index (LAI), an indic- 
ator of canopy density above each plant, was measured with a LiCor LAI-2000 
Plant Canopy Analyzer (Howlett 1998). Herbivory was monitored on 20 seed- 
lings of each species, selected randomly from those surviving in each plot. 
Seedlings with neither a recently expanded young leaf nor an expanding leaf 
bud were rejected for this study. 

Leaf damage measurements 
Leaf area loss was measured on leaves of three age classes: (1) 465 mature 

leaves, during a 6-wk period, (2) 436 recently expanded leaves, at the time of 
full expansion and (3) 388 expanding leaves, from bud break through full 
expansion. During our initial visit to each seedling in the study, we marked a 
haphazardly selected mature leaf, measured a recently expanded leaf, and 
marked and measured the length of an expanding leaf bud. Some seedlings 
did not have leaves in all three age classes, so the sample sizes were unequal. 
At the start of the study, we estimated potential leaf areas (areas if leaves had 
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been completely intact) and herbivore damaged (missing) areas of the marked 
mature and recently expanded leaves. After 6 wk, we again measured the 

potential leaf areas and herbivore-damaged areas of the mature leaves. Every 
2 wk, we measured the leaf lengths of expanding leaves and noted any missing 
leaves. We quantified potential leaf area and herbivore-damaged area of each 

expanding leaf when it had expanded completely, i.e. when a leaf had not 

changed length during 2 wk and had toughened to the condition of the recently 
expanded leaves when they were measured. Expansion times were calculated 
from the start of the first census interval during which a leaf bud at least 
doubled in length. Some leaves had expanded fully after 6 wk, but other leaves 
had not completed expansion after 10 wk, or the termination of the 

experiment. 
All leaf area and leaf damage measurements were made in the field by enu- 

merating filled squares in a transparent grid (Coley 1983b). Our data are pre- 
sented as amounts of leaf damage (total per cent area losses of recently 
expanded and expanding leaves) or as herbivory rates (leaf damage per week 
for mature leaves during the 6-wk observation, and for expanding leaves during 
their expansion period). All mature leaves were observed for the same period, 
so accumulated damage and herbivory rates are equivalent. When leaf expan- 
sion times varied, herbivory rates on expanding leaves could show a different 

pattern than did total amounts of leaf damage to the same leaves. 

Leaf toughness 
Leaf toughness was measured for plants in a plantation habitat similar to 

the Coupe 92 site. We avoided damaging the plants that were the focus of the 

present study, because these plants were part of a longer-term experiment, 
and a number of them had few leaves. One recently expanded leaf and one 
mature leaf were collected from each of 12 plants of each species. Avoiding 
major veins, we used a Chatillon penetrometer (Chatillon Instruments, New 

York) to punch six holes in each leaf lamina. A leaf's toughness was defined 
as the mean force required to punch these six holes. 

Statistics 
All analyses were performed using the statistical packageJMP 3.2 for Macin- 

tosh (SAS Institute 1994). Leaf toughness was compared between species and 

leaf-age categories with two-way ANOVA. For mature leaves, potential leaf 
areas were computed from the mean of initial and final size estimates. Within 
individual plants, amounts of damage to leaves of different ages were correl- 
ated with Kendall's T, a nonparametric statistic. For each of the three sets of 
leaves, we used ANOVA to compare leaf damages and herbivory rates among 
species, habitats and plots nested within habitat. With plot nested within hab- 

itat, the replicate plots were treated as subjects, and the individual leaves 
were equivalent to multiple observations. Because amounts of leaf damage and 

herbivory rates were not normally distributed, we transformed herbivory rates 
and leaf damages by: 

logo0 (1 + 1000 * (proportion of leaf damaged)) 
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(see Coley 1983b). Missing mature and expanding leaves were excluded from 
ANOVAs. Because many of the other measurements were close to zero, inclu- 
sion of entire leaf losses would have distorted the distributions and rendered 
ANOVA inappropriate. In addition, missing mature leaves could have senesced 
and dropped naturally. LAI was included initially as a covariate in these 
models, and r2-values and significance tests were compared between models 
with and without the covariate. Herbivory rates on mature leaves were con- 
trasted to rates on expanding leaves with MANOVA. Mature-leaf herbivory 
rates and expanding-leaf herbivory rates, transformed as above, were the two 
dependent variables, and species, habitat, and plot-within-habitat were the 
independent variables. 

Times to full expansion and times until complete loss to herbivores were 
compared among species and habitats with proportional hazards (Cox) survival 
models. Expanding leaves were considered to have left the experimental popu- 
lation when they were either completely lost to herbivores or fully expanded. 
Thus, 'time to event' was the same for both analyses, but leaves that were eaten 
were censored in the expansion model, and leaves that had fully expanded were 
censored in the leaf loss model. For leaf buds that did not change in size, 
expansion times were censored at 2 wk, the smallest interval in the study. The 
number of expanding leaves lost during expansion was compared among spe- 
cies and habitats with a three-way contingency table. In addition, numbers of 
leaves completing expansion during each of three time periods (4-6 wk, 6-8 
wk and 8-10 wk) were compared by a contingency table test. 

RESULTS 

Leaf toughness 
Mature leaves were significantly tougher than were recently-expanded leaves 

(F = 5, df = 1,44; P = 0.03), and Dryobalanops leaves were significantly tougher 
than were Shorea leaves (F = 509, df = 1,44; P < 0.0001). Mature Dryobalanops 
leaves were three times as tough as mature Shorea leaves (Dryobalanops: 347 ? 
18 g [mean ? SE penetrometer pressure]; Shorea: 114 ? 6 g). Recently expanded 
Dryobalanops leaves were nearly as tough as were mature leaves (329 + 8 g, or 
95% of mature leaf toughness), while recently expanded Shorea leaves were 
much more tender than were mature leaves (84 ? 4 g, or 74% of mature leaf 
toughness); however, the leaf age by species interaction was not significant 
(F = 0.54, df= 1,44; P = 0.54). 

Relationships among herbivory measurements 
For mature leaves, the two estimates of potential leaf area were highly cor- 

related (r = 0.98; n = 451, P < 0.0001), confirming the replicability of measure- 
ments. Initial and final leaf area estimates differed by a mean of just 4%. Only 
17 marked mature leaves, or 4% of the total, were missing at the end of the 
6-wk study. Numbers of mature leaves lost did not differ among species or 
habitats (three-way contingency table: X2 = 3.4, df= 4, P = 0.50). 
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Table 1. Results of analyses of variance comparing leaf damage and herbivory r4tes between two species of 
dipterocarp Dryobalanops lanceolata and Shorea leprosula, among forest habitats, and among plots nested within 
habitat. 

df F P 

Recently-expanded leaf damage 15,420 7.1 < 0.0001 
Model 
Species 1 81.2 < 0.0001 
Habitat 3 1.2 0.31 
Habitat*species 3 2.4 0.064 
Plot [habitat] 8 1.8 0.069 

Expanding-leaf damage 15,371 2.8 0.0004 
Model 
Species 1 20.9 < 0.0001 
Habitat 3 1.7 0.17 
Habitat*species 3 1.5 0.22 
Plot [habitat] 8 1.8 0.074 

Expanding-leaf herbivory rate 15,264 4.9 < 0.0001 
Model 
Species 1 42.6 < 0.0001 
Habitat 3 2.8 0.041 
Habitat*species 3 0.5 0.65 
Plot [habitat] 8 1.9 0.061 

Mature leaf herbivory rate 15,436 3.2 < 0.0001 
Model 
Species 1 33.5 < 0.0001 
Habitat 3 1.3 0.27 
Habitat*species 3 2.7 0.044 
Plot [habitat] 8 0.5 0.87 

Mature leaf damage (incl. previous holes) 16,449 6.0 < 0.0001 
Model 
Species 1 9.0 0.0028 
Habitat 3 1.5 0.21 
Habitat*species 3 0.8 0.52 
Plot [habitat] 8 0.5 0.89 
% holes 1 39.9 < 0.0001 

Significant correlations occurred between herbivory rates on the same leaves 
during different time periods and between damage to different leaves of the 
same plants. Initial measurements of missing leaf area for mature leaves signi- 
ficantly predicted herbivory rates on those leaves during the observation period 
(Table 1). When pooled across both species and all habitats, the amounts of 

damage to expanding leaves were correlated with damage to recently expanded 
leaves of the same plants (Kendall's T = 0.136, n = 362, P = 0.0004), but not 
with the herbivory rates on mature leaves. However, when calculated within 

species, this correlation was not significant for either species (Shorea: ' = 0.09, 
n = 180, P = 0.09; Dryobalanops: T = 0.08, n = 182, P = 0.14). 

Interspecific comparison 
For all leaf age classes, herbivory rates and leaf damages differed signific- 

antly between species (Table 1). Shorea leaves sustained much more herbivore 
damage than did Dryobalanops leaves (Figure 1), losing three to five times as 
much leaf area to herbivory (Table 2). 
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Figure 1. Observed leaf damage to seedlings of two dipterocarp species (a) Dryobalanops lanceolata, and (b) 
Shorea leprosula. For each of three age classes of leaves, vertical bars indicate the proportion of observations 
that fell into particular damage categories. Leaf damage did not differ significantly across the four habitats 
studied and are pooled across habitats. 

Leaf damage and herbivory rates across habitats 

Herbivory rates on mature leaves and amounts of damage to expanding and 

recently expanded leaves did not differ among habitats or plots (Tables 1 and 

2). The habitat by species interaction was significant for herbivory rates on 
mature leaves but not for herbivory rates on expanding leaves or damages to 

expanding leaves and recently expanded leaves. After accounting for differ- 
ences between species and among plots, herbivory rates to expanding leaves 
differed among habitats (Table 1). Least-squares mean herbivory rates were 

highest in Coupe 92, the most recently disturbed habitat, and lowest in Coupe 
78; with values of 0.24, 0.16, 0.21 and 0.36% wk-' in primary forest, Coupe 78, 
Coupe 88, and Coupe 91, respectively. 

LAI differed among habitats, averaging 6.5, 5.1, 4.2 and 2.5 m2 m-2 for prim- 
ary forest, Coupe 78, Coupe 88 and Coupe 92, respectively (see also Howlett 

1998). However, when LAI was included as a covariate in the models, it did 
not significantly predict leaf loss to herbivores for any of the leaf populations 
(P > 0.20). 

Differences betweenyoung and mature leaves 
In comparisons between herbivory rates on expanding and mature leaves, 

rates of leaf area loss were an order of magnitude less on mature leaves than 
on expanding leaves (MANOVA: F = 2.23, df = 15,194; P = 0.0068; Table 2). 
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Table 2. Mean leaf damage and herbivory rates for two species of dipterocarp seedlings, Dryobalanops lanceolata and Shorea leprosula, in four habitats. 

D. lanceolata S. leprosula 

Habitat Primary forest Coupe 78 Coupe 88 Coupe 92 Primary forest Coupe 78 Coupe 88 Coupe 92 

Recently expanded leaf damage (%)1 2.80 3.78 1.91 1.41 15.2 18.9 8.14 11.2 
Expanding leaf damage (%)' 2.43 0.67 2.03 1.82 9.05 11.1 12.9 16.3 
Expanding leaf damage (%)2 34.9 24.0 33.5 24.2 52.3 34.1 34.3 39.4 
Expanding leaf herbivory rate (% wk-') 0.33 0.10 0.28 0.30 1.25 1.65 1.98 2.61 
Mature leaf herbivory rate (% wk-1) 0.03 0.35 0.18 0.08 0.64 0.64 0.57 0.07 

does not include leaves entirely lost 
2 includes leaves entirely lost 

Table 3. Expansion history of marked expanding leaves for two dipterocarp species, Diyobalanops lanceolata and Shorea leprosula, in four forest habitats 

D. lanceolata S. leprosula 

Habitat: Primary forest Coupe 78 Coupe 88 Coupe 92 Primary forest Coupe 78 Coupe 88 Coupe 92 

Expansion history 11 11 19 13 10 15 14 17 
100% lost 
Expanded in 6 wk 11 23 17 43 8 24 26 41 

6-8 wk 11 16 16 0 3 13 16 1 
8-10wk 0 1 5 1 0 3 1 0 

Expansion incomplete 4 2 3 0 2 0 1 0 
Did not expand 20 6 0 3 28 5 2 1 

Total number 57 59 60 60 51 60 60 60 
Mean expansion time (weeks + SE) 7.3 ? 0.2 6.9 ? 0.2 7.5 ? 0.2 6.3 + 0.1 7.0 ? 0.3 6.9 ? 0.2 7.1 + 0.2 6.2 + 0.1 
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The contrast between herbivory rates on mature leaves and on expanding 
leaves differed among habitats (F = 6.18, df = 3,194; P = 0.0005), in that the 
three forested sites showed similar relationships between herbivory rates on 
mature leaves and expanding leaves, while plants in Coupe 92 sustained the 
highest herbivory rates on expanding leaves and the lowest herbivory rates on 
mature leaves. The two species showed similar patterns (F = 0.06, df = 1,194; 
P = 0.81), and the habitat by species interaction was not significant (F = 2.14, 
df= 3,194; P = 0.10). 

Leaf expansion and entire leaf losses 
Most of the losses of entire expanding leaves occurred at 2-4 wk, and loss 

functions did not differ significantly among habitats or between species 
(Cox-survival model: X2 = 3.2, df = 7, P = 0.87). The 108 leaves entirely lost 
during expansion, 28% of all expanding leaves, represented similar proportions 
from both species and all habitats (Table 3; three-way contingency table: X2 = 

4.6, df= 7, P = 0.71). 
Far fewer leaf buds expanded in the primary forest than in other habitats 

(Table 3; G-test: X2 = 101, df = 3, P < 0.0001). Considering only those leaf 
buds that expanded, the proportion that reached full expansion during each 
time period differed significantly among habitats (G-test: X2 = 86.2, df = 3, P 
< 0.0001) and generally decreased with increasing time since disturbance. In 
the multiway proportional-hazards model, times to full expansion differed 
among habitats (X2 = 22.5, df= 3, P = 0.0001; Figure 2). Expansion rates were 
fastest in Coupe 92, where most leaves had completed expansion by 6 wk, and 
were slowest and most variable in the primary forest (Table 3). The maximum 
expansion rates were similar in all habitats, but most leaves in Coupe 92 
expanded at the maximum rate, and progressively fewer did so in increasingly 
older forests. Times to full leaf expansion were similar for the two species (X2 = 
0.9, df = 1, P = 0.34). Since D?yobalanops leaves were nearly 20% larger on 

average than those of Shorea (one-way ANOVA: F = 72, df = 1,1150; P < 

0.0001), but leaf expansion times were approximately equal, the leaf-doubling 
time must have been slightly longer for Shorea leaves. 

DISCUSSION 

Observed rates of leaf loss to herbivores can depend on a number of factors, 
including intrinsic defensive strategy, resource-mediated differences in leaf 
defences, nutritional quality, expansion rates and herbivore abundances and 
behaviours. For dipterocarp seedlings planted into primary forest and into suc- 
cessive stages of post-logging recovery, patterns in foliar herbivory agreed with 
trends already recognized for plant defences and herbivory in tropical forests. 
The effects of leaf age, habitat and species on variation in leaf herbivory are 
discussed below. 
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Figure 2. Proportion of marked leaf buds that reached full expansion, for expanding leaves of two diptero- 
carp species (Dryobalanops lanceolata and Shorea leprosula) combined. Vertical bars represent ? 1 SE. 

Herbivory in relation to leaf age 
Amounts of leaf damage and herbivory rates were higher on young leaves 

than on mature leaves (Figure 1, Table 2), consistent with patterns observed 
for other tropical trees (reviewed in Coley & Aide 1991, Coley & Barone 1996). 
For both dipterocarp species, rates of leaf-area loss were substantially greater 
on expanding leaves than on mature leaves, and they differed among habitats 
for expanding leaves but not for mature leaves (Table 1). Most herbivore 

damage accumulated during leaf expansion, and many potential leaves were 

entirely lost. A previous study also found similar accumulated damage on young 
and mature leaves of three dipterocarp species (Cooke et al. 1984), suggesting 
that most damage occurs during the expansion phase. This pattern likely 
results from the lower toughness and higher nutritional quality of expanding 
leaves (Coley & Kursar 1996). Although herbivory rates on expanding leaves 
differed among habitats, rates of entire leaf loss were similar in all habitats. 
This disparity suggests that entire leaf losses and leaf damage may have been 
caused by different agents. The high rate (28%) of leaf loss that we observed 

during leaf expansion was similar to the 27% losses found by Aide (1993) in 
Panama. 

Although they are simple and fast, one-time damage measurements on 

recently expanded leaves did not account for leaves that were entirely lost to 
herbivores, and thus underestimated herbivory rates by up to 10 times. This is 

296 



Herbivory on dipterocarp seedlings 

a larger difference between expanding and mature leaf damage than has been 
found in other studies, where single measurements of leaf damage typically 
underestimate herbivory rates by two to five times (Coley & Barone 1996, Filip 
et al. 1995, Lowman 1985, 1992b). 

Interspecific variation in herbivory rates 
Shorea leprosula sustained higher rates of leaf area loss and more leaf damage 

than did Dryobalanops lanceolata (Figure 1, Table 2). Dryobalanops exhibited very 
low herbivory rates, particularly for mature leaves. These differences may be 
related to interspecific differences in defensive investment. Since Shorea grows 
significantly more rapidly than does Dryobalanops (Howlett 1998, Meijer & Wood 
1964), the resource availability theory of plant defences (Coley et al. 1985) 
predicts that Shorea should invest less in leaf defence than does Dryobalanops. 
Consistent with this theory, both mature and recently expanded Shorea leaves 
were much less tough than were Dryobalanops leaves of comparable age, sug- 
gesting fewer structural defences. The between-species ratios of leaf toughness 
were very similar to the ratios of leaf damage, suggesting that these structural 
defences may have been important herbivore deterrents. 

Intraspecific variation in herbivory 
Light is one of the most limiting resources in the understorey of tropical 

forests, and differences in light availability could influence any light-dependent 
process. The two dipterocarp species in our study presumably rely on carbon- 
based structural or chemical defences, and thus individuals might be expected 
to increase their leaf defences in proportion to light availability across habitats, 
in the absence of systematic differences in soil fertility (Howlett 1998). Average 
canopy cover, inversely related to light availability, increased with time since 
logging and thus differed among the four study habitats (Howlett 1998), but 
the leaf area index (LAI) above individual plants was not correlated with differ- 
ences in herbivory rates. There are at least two possible explanations for the 
failure of our LAI measurements to predict herbivory: (1) LAI measurements 
were taken above the plants and were not strongly related to the light environ- 
ment experienced by individual leaves, some of which were shaded within the 
plant canopy, or (2) light environments had changed in the year between the 
LAI measurement and the herbivory monitoring. With these confounding fac- 
tors and the high variability among plants in leaf losses to herbivores, it may 
be unrealistic to fit herbivory rates to a linear function of the overhead canopy. 

Most life-time leaf damage occurs during the expansion phase (Coley & 
Kursar 1996), and damage to expanding leaves depends both on time until full 
expansion and on herbivory rates during this period. In the most open habitat 
in our study, leaves expanded more rapidly than in other habitats (Figure 2, 
Table 3), and very young leaves may have been more palatable as a result of 
increased concentrations of metabolic enzymes required for leaf growth 
(Coley & Kursar 1996, Kursar & Coley 1991). For Shorea, expanding leaves 
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were eaten at higher rates in the open, recently logged forest than in the 

primary forest understorey (Table 2). Other studies also have found higher 
rates of young leaf herbivory in sun than in shade, in part due to herbivore 

preferences for sun habitats (Basset 1991, Harrison 1987, Lincoln & Mooney 
1984). However, faster leaf expansion offset higher herbivory rates in the most 

open habitat, with expanding Shorea leaves accumulating similar damage in all 
habitats. Faster expansion also benefited Dryobalanops, where leaves in the 

recently logged forest accumulated less damage than did leaves in the other 
habitats with similar herbivory rates. Similarly, for other species with light- 
limited rates of leaf expansion, faster expansion could reduce leaf damage in 

high-light habitats, even where increased palatability results in greater rates 
of leaf loss to herbivores. 

Increased light availability may enhance both foliar tissue quality and leaf 

defences, with conflicting influences on herbivory rates. For example, sun 
leaves typically exhibit relatively high concentrations of nitrogen to support 
their high photosynthetic rates (Field & Mooney 1986, Mooney & Gulmon 

1982), but they can also be better defended when mature (Denslow et al. 1990, 
Folgarait & Davidson 1994, Langenheim et al. 1981, Mole et al. 1988, Waterman 
et al. 1984). Considerable variation in whether sun or shade leaves are preferred 
by herbivores may depend in part on the relative scaling of nutritional quality 
versus foliar defences with light availability (Bryant et al. 1987, Denslow et al. 

1990, Lincoln & Mooney 1984, Mooney & Gulmon 1982, Nichols-Orians 1991). 
At high leaf nitrogen levels, high photosynthetic capacities may help to recover 
some of the costs of carbon-based defences (Mooney & Gulmon 1982). The 

production of phenolics may be more sensitive to ratios of light to nutrients in 

fast-growing than in slow-growing species (Bryant et al. 1987), which could 

explain why, in the MANOVA results, mature leaf herbivory tended to decline 
with increasing light for Shorea but not for Dryobalanops. For Shorea, mature sun 
leaves may have been better defended than were mature shade leaves. How- 

ever, without data for either leaf defences or leaf nutritional quality, relation- 

ships between these factors and herbivory remain tentative. 
Factors such as herbivore population densities or behaviours, which are 

extrinsic to leaf tissue quality, could also be important in determining whether 

herbivory rates differ between sunny and shaded habitats. For example, high 
solar irradiance may enable insect herbivores to feed more rapidly or more 

efficiently, so that adults prefer to oviposit on leaves in the sun (Lincoln & 

Mooney 1984). Relatively rapid new leaf production in sunny habitats also may 
cause herbivores that specialize on young leaves to congregate in those habitats 

(Basset 1991). Thus, herbivore densities may vary among habitats. Preferences 
for sun versus shade leaves may differ among types of invertebrate herbivores 

(Basset 1991, Maiorana 1981), perhaps because herbivores experience different 
risks of predation in exposed and shaded sites (Maiorana 1981). However, for 

Hybanthus prunifolius, a tropical forest shrub, higher concentrations of herbivor- 
ous moths on gap plants than on plants in the shaded understorey were attrib- 
utable to the higher tissue quality of leaves on gap plants, and not to higher 
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temperatures, or to the distribution of predators (Harrison 1987). Compre- 
hensive studies such as Harrison's, which examined the relative influences of 
a diversity of factors simultaneously, will be important in establishing any gen- 
eral patterns of variation in herbivory over resource gradients. 

Some individual plants may be more susceptible than others to herbivore 
attack (Coley 1986). We observed that mature leaves with high previous herbi- 
vore attacks experienced higher current rates of herbivory. Similarly, in Aus- 
tralian temperate rain forests, Lowman (1992a) observed that leaves which 

escaped herbivory when young were likely to remain largely damage-free until 
senescence. Clark & Clark (1985) also found that damage rates were correlated 
between observation periods (but see Coley 1983a). Consistent differences 

among individuals could result either from genetic variation in resistance to 

herbivory or from persistent environmental effects. 

Effects of herbivory on growth and mortality rates 
Leaf damage by herbivores was similar across light environments in the four 

study habitats, and thus does not account for observed differences in seedling 
growth and mortality rates (Howlett 1998). Further studies of the relationships 
between leaf expansion rates and herbivory rates across resource gradients 
might identify circumstances leading to different kinds of relationships 
between these processes and seedling survival. 

Modest rates of herbivory may have little effect on growth or mortality rates 
of established seedlings of long-lived, shade-tolerant species. Previously, Becker 

(1983) observed that even a one-time 25% leaf area removal did not increase 

mortality of Shorea leprosula seedlings during a two-year study. Similarly, Coley 
(1983a) found no correlation between short-term herbivory measurements and 

plant growth rates for a set of Panamanian species, and Aide & Zimmerman 

(1990) reported no relationship between herbivory rates and seedling sur- 

vivorship in the liana Connarus turczannowii (Connaraceae). In contrast, in com- 

paring individuals of Piper arieanum (Piperaceae) with low and high levels of 
leaf damage, Marquis (1984) observed reduced growth rates in the latter group 
even 2 y later. Clark & Clark (1985) found that herbivory on the first seedling 
leaves of Dipteryx panamensis (Fabaceae) generally resulted in seedling death. 
For seedlings of shade tolerant species, it may be that only serious defoliation 
of small plants results in a dramatic increase in short-term mortality 
(Nascimento & Hay 1994). 
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